Meteor Activity Outlook for December 15-21, 2012

The following is a slightly edited version of Bob Lunsford’s excellent weekly summary of meteor activity. The original version can be found at the American Meteor Society’s site.

No matter where you live, the first half of December provides some of the best meteor activity of the year. This activity will be tempered by a bright moon during the first week of the month. The next two weeks are moon-free and offer the meteor observer ample opportunities to view some celestial fireworks. In the northern hemisphere the sporadic rates are still strong plus you can also count on strong activity from the Geminids, which peak on December 13. There are also several minor radiants that add a few meteors each hour. All of these centers of activity are located high in the sky during the early morning hours this time of year. Much of the activity mentioned above can also be seen from the southern hemisphere. While the sporadic rates are not as strong as those seen from the north, they are stronger than the previous months and heading for a maximum in February. The warm, but short summer nights south of the equator make for some great viewing as long as the moon does not interfere.

During this period the moon reaches its first quarter phase on Wednesday December 19th. At this time the moon is located ninety degrees east of the sun and will set near midnight local standard time (LST). This weekend the waxing crescent moon will set during the early evening hours and will not cause any problems to meteor observers. As the week progresses the moon will set later and later, but will still allow unhampered views of the more active morning sky. The estimated total hourly meteor rates for evening observers this week is near four for observers located at mid-northern latitudes and three for observers in mid-southern latitudes. For morning observers the estimated total hourly rates should be near thirty from the mid-northern hemisphere and sixteen from the mid-southern hemisphere. The actual rates will also depend on factors such as personal light and motion perception, local weather conditions, alertness and experience in watching meteor activity. Rates are slightly reduced during the evening hours during this period due to moonlight.

The radiant (the area of the sky where meteors appear to shoot from) positions and rates listed below are exact for Saturday night/Sunday morning December 15/16. These positions do not change greatly day to day so the listed coordinates may be used during this entire period.

The following showers are expected to be active this week:

Now that the activity from particles produced by comet 2P/Encke has ceased encountering the Earth, the Taurid showers for 2012 are over and we resume reporting activity from the Antihelion (ANT) radiant. This is not a true radiant but rather activity caused by the Earth’s motion through space. As the Earth revolves around the sun it encounters particles orbiting in a prograde motion that are approaching their perihelion point. They all appear to be radiating from an area near the opposition point of the sun, hence the name Antihelion. These were once recorded as separate showers throughout the year but it is now suggested to bin them into their category separate from true showers and sporadics. This radiant is a very large oval some thirty degrees wide by fifteen degrees high. Activity from this radiant can appear from more than one constellation. The position listed here is for the center of the radiant which is currently located at 06:28 (097) +23. This position lies in western Gemini near the third magnitude star Mebsuta (Epsilon Geminorum). Antihelion activity may also appear from eastern Taurus, northeastern Orion, or southern Auriga. This radiant is best placed near midnight LST when it lies on the meridian and is highest in the sky. Rates at this time should be near three per hour as seen from the northern hemisphere and two per hour from south of the equator. With an entry velocity of 30 km/sec., the average Antihelion meteor would be of slow velocity.

The December Monocerotids (MON) are active from December 7th through the 18th. Peak activity occurred on December 8th so current rates should be less than one per hour no matter your location. The radiant is located at 07:00 (105) +07. This position lies in eastern Monoceros, ten degrees east of the zero magnitude star Procyon (Alpha Canis Minoris).  The Monocerotids are best seen near 0100 LST when the radiant lies highest above the horizon. At 41 km/sec. the Monocerotids produce mostly meteors of medium velocity.

The Geminids (GEM) reached maximum activity on Thursday evening/Friday morning December 13/14. This weekend will be your last good opportunity to see any Geminids in 2012 as activity ceases next week. The radiant is currently located at 07:40 (115) +32, which places it in northeastern Gemini, just east of the second magnitude star Castor (Alpha Geminorum). Rates this weekend, when the radiant lies high in the sky, would be 20-40 per hour (depending on your viewing conditions) on the night of 14/15 and 10-20 per hour on the night of 15/16. Geminid meteors strike the atmosphere at 35km/sec, which will produce meteors of medium-slow velocity.

The Sigma Hydrids (HYD) are active from November 26 through December 20. Maximum activity occurred on December 6, so current rates would be near one per hour no matter your location. The radiant is located at 08:47 (132) +01. This position lies in western Hydra, just south of the group of fourth magnitude stars that make up the “head” of the water serpent. These meteors are best seen near 0300 LST when the radiant lies highest above the horizon. At 61 km/sec. the Sigma Hydrids produce mostly swift meteors.

The December Leonis Minorids (DLM) are active from a radiant located at 10:32 (158) +32. This position lies in central Leo Minor, approximately ten degrees northeast of the third magnitude star Zeta Leonis. These meteors are best seen near 0500 LST when the radiant lies highest above the horizon. This shower peaks on December 17th so current rates would be near two per hour as seen from the northern hemisphere and less than one per hour as seen from south of the equator. At 64 km/sec. the December Leonis Minorids produce mostly swift meteors.

On the nights of December 19-21, weak activity from the Rho Leonids  (RLE) may be noticed. Sirko Molau and Juergen Rendtel of the IMO have found the actual activity range is December 17-23, but away from the nights mentioned above, the display is very weak. Previous radiants for this shower were further north. Video results give a position at maximum near 10:34 (159) -05. This actually places it in central Sextans, some fifteen degrees southeast of the first magnitude star Regulus (Alpha Leonis). Rates could approach one shower member per hour during the last few hours before dawn on the nights previously mentioned. At 69 km/sec. the Rho Leonids would produce mostly swift meteors.

On the nights of December 15/16 and 16/17, weak activity from the Virgo/Corvus border may be noticed. This currently unnamed source is active from December 5-27, but incredibly weak except for the two nights mentioned above. The exact radiant position for IMO Shower #239 is 12:52 (193) -11. This places it some ten degrees west of the first magnitude star Spica (Alpha Virginis). At 70 km/sec. These meteors are best seen during the last dark hour before dawn, when the radiant lies highest above the horizon in a dark sky. IMO Shower #239 would produce mostly swift meteors.

Another shower found by Sirko Molau and Juergen Rendtel of the IMO are the December Sigma Virginids (DSV). This radiant is active through most of December and the first week of January. Visual observers have their best chance at catching these meteors from December 17 through January 1st. Maximum activity occurs on December 31st. The current radiant location is 13:32 (203) +05, which places it in northern Virgo some five degrees north of the third magnitude star Heze (Zeta Virginis). These meteors are best seen during the last dark hour before dawn, when the radiant lies highest above the horizon in a dark sky. At 69 km/sec. the December Sigma Virginids would produce mostly swift meteors.

Activity from the Ursids (URS) should begin to appear during the mid-week period from a radiant located at 13:58 (210) +76. This position lies in eastern Ursa Minor, fifteen degrees east of the second magnitude star Kochab (Beta Ursa Minoris). It must be remembered that the length of degrees are smaller in high declinations so the radiant is actually closer to this star than these figures imply. These meteors are best seen during the last dark hour before dawn, when the radiant lies highest above the horizon in a dark sky. This shower is not well seen from the southern hemisphere. Maximum activity is not expected until Saturday December 22th, so current hourly rates this week would probably be less than one. On the morning of maximum, hourly rates of between 5-10 Ursids may be seen. At 33 km/sec. the Ursids produce mostly medium-slow meteors.

Lastly, the December Alpha Draconids (DAD) are active from December 4-16. Maximum activity occurred on December 5. The radiant is currently located at 14:08 (212) +57. This position actually lies in northeastern Ursa Major, ten degrees northeast of the second magnitude double star Mizar (Zeta Ursae Majoris). These meteors are best seen during the last dark hour before dawn, when the radiant lies highest above the horizon in a dark sky. This shower is not well seen from the southern hemisphere. Expected hourly rates would be less than one no matter your location. At 44 km/sec. the Alpha Draconids produce mostly medium speed meteors.

As seen from the mid-northern hemisphere (45N) one would expect to see approximately eleven sporadic meteors per hour during the last hour before dawn as seen from rural observing sites. Evening rates would be near three per hour. As seen from the mid-southern hemisphere (45S), morning rates would be near seven per hour as seen from rural observing sites and two per hour during the evening hours. Locations between these two extremes would see activity between the listed figures. Evening rates are slightly reduced due to moonlight.

The list below presents a condensed version of the expected activity this week.
Rates and positions are exact for Saturday night/Sunday morning.

Antihelions (ANT) – 06:28 (097) +23   Velocity – 30km/sec.
Northern Hemisphere – 3 per hr.   Southern Hemisphere – 2 per hr

Dec. Monocerotids (MON) – 07:00 (105) +07   Velocity – 41km/sec.
Northern Hemisphere – <1 per hr.   Southern Hemisphere – <1 per hr

Geminids (GEM) -07:40 (115) +32   Velocity – 35km/sec.
Northern Hemisphere – 10 per hr.   Southern Hemisphere – 5 per hr

Sigma Hydrids (HYD) -08:47 (132) +01   Velocity – 61km/sec.
Northern Hemisphere – 1 per hr.   Southern Hemisphere – 1 per hr

December Leonis Minorids (DLM) – 10:32 (158) +32   Velocity – 64km/sec.
Northern Hemisphere – 2 per hr.  Southern Hemisphere – <1 per hr

Rho Leonids (RLE) – 10:34 (159) -05   Velocity – 69km/sec.
Northern Hemisphere – 1 per hr.  Southern Hemisphere – 1 per hr

IMO #239  – 12:52  (193) -11   Velocity – 69km/sec.
Northern Hemisphere – 2 per hr. Southern Hemisphere – <1 per hr

Dec. Sigma Virginids (DSV) – 13:32 (203) +05   Velocity – 44km/sec.
Northern Hemisphere – <1 per hr. Southern Hemisphere – <1 per hr

Ursids (URS)  – 13:58 (210) +76    Velocity – 33km/sec.
Northern Hemisphere – <1 per hr. Southern Hemisphere – <1 per hr

December Alpha Draconids (DAD) – 14:08 (212) +57   Velocity – 44km/sec.
Northern Hemisphere – <1 per hr. Southern Hemisphere – <1 per hr

Clear Skies!
Robert Lunsford
American Meteor Society

Meteor Activity Outlook for December 8-14, 2012

The following is a slightly edited version of Bob Lunsford’s excellent weekly summary of meteor activity. The original version can be found at the American Meteor Society’s site.

No matter where you live, the first half of December provides some of the best meteor activity of the year. This activity will be tempered by a bright moon during the first week of the month. The next two weeks are moon-free and offer the meteor observer ample opportunities to view some celestial fireworks. In the northern hemisphere the sporadic rates are still strong plus you can also count on strong activity from the Geminids, which peak on December 13. There are also several minor radiants that add a few meteors each hour. All of these centers of activity are located high in the sky during the early morning hours this time of year. Much of the activity mentioned above can also be seen from the southern hemisphere. While the sporadic rates are not as strong as those seen from the north, they are stronger than the previous months and heading for a maximum in February. The warm, but short summer nights south of the equator make for some great viewing as long as the moon does not interfere.

During this period the moon reaches its new phase on Thursday December 13th. At this time the moon is located near the sun and will be invisible at night. This weekend the waning crescent moon will rise during the early morning hours. It will be a minor inconvenience that can be overcome by simply viewing with the moon at your back.  The estimated total hourly meteor rates for evening observers this week is near four for observers located at mid-northern latitudes and three for observers in mid-southern latitudes. For morning observers the estimated total hourly rates should be near twenty from the mid-northern hemisphere and sixteen from the mid-southern hemisphere. The actual rates will also depend on factors such as personal light and motion perception, local weather conditions, alertness and experience in watching meteor activity. Rates are slightly reduced during the morning hours during this period due to moonlight.

The radiant (the area of the sky where meteors appear to shoot from) positions and rates listed below are exact for Saturday night/Sunday morning December 8/9. These positions do not change greatly day to day so the listed coordinates may be used during this entire period.

The following showers are expected to be active this week:

Meteors from comet 46P\Wirtanen? There is the possibility that we may be able to see meteor activity from comet 46P\Wirtanen as the Earth passes through several filaments of material produced when the comet passed through perihelion during the first half of the 20th century. This is strictly an evening display as any meteors from this source would have a radiant of 23:48 (357) +04. This position lies in western Pisces, just east of the circle of faint stars known as the “Circlet”. This area of the sky is best seen as it becomes dark as it culminates between 1800 and 1900 (6pm and 7pm) local standard time. The first of these encounters is with the material shed in 1947. The expected peak is at 06:21 Universal Time (UT) on December 11th. This corresponds to 22:21 (10:21pm) PST and 23:21 (11:21pm) MST on Monday evening December 10th. The radiant is too low for any activity to be seen in the eastern half of North America. The second encounter is material from 1941. This peak is expected to occur at 10:20 UT on December 12th. This is too late for North America but observers in Hawaii may be able to see some of this activity. The third encounter is produced from the 1934 return. This peak is expected to occur at 12:30 UT on December 13th. This timing favors the western Pacific area. The last possible encounter is produced by the 1927 return. This peak is expected to occur at 00:02 UT on December 14th. This corresponds to 19:02 (7:02pm) EST and 18:02 (6:02pm) CST on the evening of December 13th. This timing favors the eastern half of North America. If any meteors are produced from this source, they would be extremely slow.

The last of the Northern Taurids (NTA) can be seen this weekend from a radiant centered at 05:26 (082) +27. This area of the sky lies in northeastern Taurus, two degrees south of the second magnitude star El Nath (Beta Tauri). The radiant is best placed near 0100 LST, when it lies highest above the horizon. Maximum activity occurred on November 13th so current hourly rates would be near one from the northern hemisphere and less than one from south of the equator. Meteors from the Northern Taurids strike the atmosphere at 29km/sec., which would produce meteors of slow velocity.

The Monocerotids (MON) are active from December 7th through the 18th. Peak activity occurs on December 8th with the radiant is located at 06:36 (099) +08. This position lies in northern Monoceros, eight degrees east of the first magnitude orange star Betelgeuse (Alpha Orionis). Current rates should be near one per hour no matter your location. The Monocerotids are best seen near 0100 LST when the radiant lies highest above the horizon. At 41 km/sec. the Monocerotids produce mostly meteors of medium velocity.

The Geminids (GEM) reach maximum activity on Thursday evening/Friday morning December 13/14, when approximately 75 shower members can be seen each hour from rural observing sites. While the Geminids are currently the most active radiant in the sky, rates this weekend will only be near five shower members per hour. Rates will increase dramatically as we approach the maximum date and the moon wanes. The radiant is currently located at 07:14 (109) +33. This position lies in northern Gemini, four degrees west of the second magnitude star Castor (Alpha Geminorum).  Although Geminid meteors can be seen all night long, they are best seen near 0200 LST when the radiant lies highest above the horizon. Geminid activity can be seen from the southern hemisphere but at much reduced rate. As seen from south of the equator, Geminid activity could only be seen for a few hours before and after 0200 LST. At 35 km/sec. the Geminids produce mostly meteors of medium velocity. This is one of the few displays that can be well seen prior to midnight. Geminid meteors seen just after dusk will be very long with a long duration. This is due to the fact that the radiant will lie near the horizon and any Geminid meteor seen be just be skimming the upper regions of the atmosphere. Therefore they will take longer to disintegrate in the much less dense portion of the atmosphere. Geminid meteors strike the atmosphere at 35km/sec, which will produce meteors of medium-slow velocity.

The Puppid-Velids (PUP) are a vast complex of weak radiants located in the constellations of Puppis and Vela. Visual plots and photographic studies have revealed many radiants in this area during November and December. The combined strength of these radiants can produce a zenith hourly rate (ZHR) of ten at maximum, which occurs near December 7. Actual hourly rates will be much less unless you happen to be observing from the deep Southern Hemisphere. The center of this activity is currently located at 08:08 (124) -45. This position lies in western Vela, three degrees northeast of the second magnitude star Gamma Velorum. These meteors are best seen near 0300 LST when the radiant lies highest above the horizon in a dark sky. Observers located in the Southern Hemisphere have an advantage viewing this shower as the radiant will rise higher into their sky allowing more activity to be seen. At 40 km/sec. the Puppid-Velids produce meteors of average velocity.

The Sigma Hydrids (HYD) are active from November 26 through December 20. Maximum activity occurred on December 6 and this radiant is currently the third most active in the sky. The radiant is located at 08:24 (126) +02. This position lies in western Hydra, just west of the group of fourth magnitude stars that make up the “head” of the water serpent. These meteors are best seen near 0300 LST when the radiant lies highest above the horizon. Current rates would be near three per hour no matter your location. At 61 km/sec. the Sigma Hydrids produce mostly swift meteors.

The December Leonis Minorids (DLM) are active from a radiant located at 10:08 (152) +36. This position lies in central Leo Minor, approximately twelve degrees north of the third magnitude star Zeta Leonis. These meteors are best seen near 0500 LST when the radiant lies highest above the horizon. This shower peaks on December 17th so current rates would be near one per hour as seen from the northern hemisphere and less than one per hour as seen from south of the equator. At 64 km/sec. the December Leonis Minorids produce mostly swift meteors.

Lastly, the December Alpha Draconids (DAD) are active from December 4-16. Maximum activity occurred on December 5. The radiant is currently located at 13:40 (205) +60. This position actually lies in northeastern Ursa Major, direct between the fourth magnitude star Thuban (Alpha Draconis) and the second magnitude double star Mizar (Zeta Ursae Majoris). These meteors are best seen during the last dark hour before dawn, when the radiant lies highest above the horizon in a dark sky. This shower is not well seen from the southern hemisphere. Expected hourly rates would be less than one no matter your location. At 44 km/sec. the Alpha Draconids produce mostly medium speed meteors.

As seen from the mid-northern hemisphere (45N) one would expect to see approximately seven sporadic meteors per hour during the last hour before dawn as seen from rural observing sites. Evening rates would be near three per hour. As seen from the mid-southern hemisphere (45S), morning rates would be near four per hour as seen from rural observing sites and two per hour during the evening hours. Locations between these two extremes would see activity between the listed figures. Morning rates are reduced due to moonlight.

The list below presents a condensed version of the expected activity this week.
Rates and positions are exact for Saturday night/Sunday morning.

Northern Taurids (NTA) -  05:26 (082) +27   Velocity – 29km/sec.
Northern Hemisphere – 1 per hr.   Southern Hemisphere – <1 per hr

Dec. Monocerotids (MON) – 06:36 (099) +08   Velocity – 41km/sec.
Northern Hemisphere – 1 per hr. Southern Hemisphere – 1 per hr

Geminids (GEM) – 07:14 (109) +33   Velocity – 35km/sec.
Northern Hemisphere – 5 per hr.   Southern Hemisphere – 3 per hr

Puppid-Velids (PUP) – 08:08 (124) -45   Velocity – 40km/sec.
Northern Hemisphere – 1 per hr. Southern Hemisphere – 5 per hr

Sigma Hydrids (HYD) – 08:24 (126) +02   Velocity – 61km/sec.
Northern Hemisphere – 3 per hr.   Southern Hemisphere – 3 per hr

December Leonis Minorids (DLM) – 10:08 (152) +36   Velocity – 64km/sec.
Northern Hemisphere – 1 per hr. Southern Hemisphere – <1 per hr

December Alpha Draconids (DAD) – 13:40 (205) +60   Velocity – 44km/sec.
Northern Hemisphere – 1 per hr. Southern Hemisphere – <1 per hr

Clear Skies!
Robert Lunsford
American Meteor Society

Meteor Activity Outlook for December 1-7, 2012

The following is a slightly edited version of Bob Lunsford’s excellent weekly summary of meteor activity. The original version can be found at the American Meteor Society’s site.

No matter where you live, the first half of December provides some of the best meteor activity of the year. This activity will be tempered by a bright moon during the first week of the month. The next two weeks are moon-free and offer the meteor observer ample opportunities to view some celestial fireworks. In the northern hemisphere the sporadic rates are still strong plus you can also count on strong activity from the Geminids, which peak on December 13. There are also several minor radiants that add a few meteors each hour. All of these centers of activity are located high in the sky during the early morning hours this time of year. Much of the activity mentioned above can also be seen from the southern hemisphere. While the sporadic rates are not as strong as those seen from the north, they are stronger than the previous months and heading for a maximum in February. The warm, but short summer nights south of the equator make for some great viewing as long as the moon does not interfere.

During this period the moon reaches its last quarter phase on Thursday December 6th. At this time the moon is located ninety degrees west of the sun and rises near 2300 (11pm) local standard time (LST). This weekend the waning gibbous moon will rise during the early evening hours and will effectively spoil the sky the remainder of the night with its intense lunar glare. The estimated total hourly meteor rates for evening observers this week is near four for observers located at mid-northern latitudes and three for observers in mid-southern latitudes. For morning observers the estimated total hourly rates should be near twelve from the mid-northern hemisphere and seven from the mid-southern hemisphere. The actual rates will also depend on factors such as personal light and motion perception, local weather conditions, alertness and experience in watching meteor activity. Rates are reduced during this period due to moonlight.

The radiant (the area of the sky where meteors appear to shoot from) positions and rates listed below are exact for Saturday night/Sunday morning December 1/2. These positions do not change greatly day to day so the listed coordinates may be used during this entire period.

Details of each active shower will return next week when the observing conditions improve.

The following radiants are expected to be active this week.  Rates and positions are exact for Saturday night/Sunday morning .

Dec. Phoenicids (PHO) – 01:00 (015) -53    Velocity – 18km/sec.
Northern Hemisphere – <1 per hr.    Southern Hemisphere – <1 per hr.

Andromedids (AND) – 01:28 (022) +55   Velocity – 19km/sec.
Northern Hemisphere – <1 per hr.   Southern Hemisphere – <1 per hr.

Northern Taurids (NTA) – 05:03 (076) +26   Velocity – 29km/sec.
Northern Hemisphere – 1 per hr.   Southern Hemisphere – <1 per hr.

November Orionids (NOO) – 06:10 (093) +15   Velocity – 44km/sec.
Northern Hemisphere – 2 per hr.   Southern Hemisphere – 1 per hr.

Geminids (GEM) – 06:47 (102) +34   Velocity – 35km/sec.
Northern Hemisphere – 1 per hr.   Southern Hemisphere – <1 per hr.

Puppid-Velids (PUP) – 08:00 (120) -45   Velocity – 40km/sec.
Northern Hemisphere – <1 per hr. Southern Hemisphere – 1 per hr.

Sigma Hydrids (HYD)  – 08:04 (121) +04   Velocity – 61km/sec.
Northern Hemisphere – 1 per hr. Southern Hemisphere – 1 per hr.

Dec. Kappa Draconids (DKD) – 12:17 (184) +71   Velocity – 43km/sec.
Northern Hemisphere -<1 per hr. Southern Hemisphere – <1 per hr.

Clear Skies!
Robert Lunsford
American Meteor Society

Meteor Activity Outlook for November 24-30, 2012

The following is a slightly edited version of Bob Lunsford’s excellent weekly summary of meteor activity. The original version can be found at the American Meteor Society’s site.

As seen from the northern hemisphere, meteor rates continue to be strong in November. While no major activity is expected this month, the two Taurid radiants plus the Leonids keep the skies active. The addition of strong sporadic rates make November one of the better months to view meteor activity from north of the equator. Skies are fairly quiet as seen from the
southern hemisphere this month. Activity from the three showers mentioned above may be seen from south of the equator, but the sporadic rates are much lower than those seen in the northern hemisphere.

During this period the moon reaches its full phase on Wednesday November 28th. At this time the moon is located opposite the sun and will remain in the sky all night long. This weekend the waxing gibbous moon will set during the early morning hours and will allow a couple of hours between moon set and morning twilight to view the meteor activity under good conditions. The estimated total hourly meteor rates for evening observers this week is near three for observers located at mid-northern latitudes and two for observers in mid-southern latitudes. For morning observers the estimated total hourly rates should be near eighteen from the mid-northern hemisphere and ten from the mid-southern hemisphere. The actual rates will also depend on factors such as personal light and motion perception, local weather conditions, alertness and experience in watching meteor activity. Rates are reduced during this period due to moonlight.

The radiant (the area of the sky where meteors appear to shoot from) positions and rates listed below are exact for Saturday night/Sunday morning November 24/25. These positions do not change greatly day to day so the listed coordinates may be used during this entire period.

The following radiants are expected to be active this week:

Remnants from the famous Andromedid (AND) shower, noted for intense storms during the 19th century, may still be seen throughout November. The current position of this large radiant is 01:38 (024) +41. This position lies in eastern Andromeda, close to the position occupied by the faint stat known as Upsilon Andromedae. The radiant is so diffuse that Andromedid meteors may be seen coming from Triangulum, northern Pisces, as well as Andromeda. Visual activity is expected to be low, but detectable. An inconspicuous maximum occurred on November 9, when this source was the 5th most active radiant in the sky. The Andromedid meteors are best seen near 2200 (10pm) local standard time (LST), when the radiant lies on the meridian and lies highest in the sky. At 19km/sec., the average Andromedid will appear as a very slow moving meteor.

Studies of the IMO video database by Sirko Molau and Juergen Rendtel has revealed another active radiant in Taurus this time of year. Now that the Southern Taurids are no longer detectable, the Gamma Taurids (GTA) may be distinguished within the Taurid complex. The Gamma Taurid radiant is centered at 04:22 (065) +15. This area of the sky lies in western Taurus, three degrees southwest of the orange first magnitude star Aldebaran (Alpha Tauri). The radiant is best placed near 0100 LST, when it lies highest above the horizon. Maximum activity occurred on November 10th so current rates would be near one shower member per hour, no matter your location. Meteors from the Gamma Taurids strike the atmosphere at 27km/sec., which would produce meteors of slow velocity.

The Northern Taurids (NTA) are active from a radiant centered at 04:40 (070) +25. This area of the sky lies in northern Taurus, nine degrees north of the orange first magnitude star Aldebaran (Alpha Tauri). The radiant is best placed near 0100 LST, when it lies highest above the horizon. Maximum activity occurred on November 13th so current hourly rates would be near two from the northern hemisphere and one from south of the equator. Meteors from the Northern Taurids strike the atmosphere at 29km/sec., which would produce meteors of slow velocity.

The November Orionids (NOO) are now the most active radiant in the sky and will remain #1 throughout the remainder of November. This radiant is located at 05:50 (087) +15. This area of the sky is located on the Orion/Taurus border, eight degrees north of the first magnitude orange star Betelgeuse (Alpha Orionis). The peak occurs on November 30th so current rates will be 2-3 per hour, no matter your location. If the moon lies above the horizon rates will be lower due to the lunar glare. The radiant is best placed for viewing near 0200 LST when it lies on the meridian and is highest above the horizon. With an entry velocity of 44 km/sec., the November Orionids would be of medium speed.

The Leonids (LEO) are still active from a radiant located at 10:34 (159) +20. This position lies in northwestern Leo, two degrees east of the second magnitude double star Algeiba (Gamma Leonis). Current rates should be 1-2 per hour, no matter your location. The Leonid radiant is best placed during the last hour before morning twilight when the radiant lies highest in a dark sky. Leonids may be seen from the southern hemisphere but the viewing conditions are not quite as favorable as those north of the equator.

Studies of the IMO video database by Sirko Molau and Juergen Rendtel has revealed an active radiant in Draco this time of year. The November Iota Draconids (NID) radiant is located at 12:44 (191) +68. This area of the sky lies in western Draco, two degrees southeast of the fourth magnitude star Kappa Draconis. The radiant is best placed near 0100 LST, when it lies highest above the horizon. Maximum activity occurs on November 26th so current rates would be less than one shower member per hour, no matter your location. Due to the high northerly declination of the radiant these meteors are not visible from most of the southern hemisphere. Only southern equatorial regions would have any chance of seeing activity from this source Meteors from the November Iota Draconids strike the atmosphere at 43km/sec., which would produce meteors of medium velocity.

As seen from the mid-northern hemisphere (45N) one would expect to see approximately ten sporadic meteors per hour during the last hour before dawn as seen from rural observing sites. Evening rates would be near three per hour. As seen from the mid-southern hemisphere (45S), morning rates would be near five per hour as seen from rural observing sites and two per hour during the evening hours. Locations between these two extremes would see activity between the listed figures. Evening rates are reduced due to moonlight.

The list below presents a condensed version of the expected activity this week.
Rates and positions are exact for Saturday night/Sunday morning but may be used
for the entire period.

Andromedids (AND) – 01:38 (024) +41   Velocity – 19km/sec.
Northern Hemisphere – <1 per hr.   Southern Hemisphere – <1 per hr.

Gamma Taurids (GTA) – 04:22 (065) +15   Velocity – 29km/sec.
Northern Hemisphere – 1 per hr.   Southern Hemisphere – 1 per hr.

Northern Taurids (NTA) – 04:40 (070) +25   Velocity – 29km/sec.
Northern Hemisphere – 2 per hr.   Southern Hemisphere – 1 per hr.

November Orionids (NOO) – 05:50 (087) +15   Velocity – 44km/sec.
Northern Hemisphere – 3 per hr.   Southern Hemisphere – 2 per hr.

Leonids (LEO) – 10:34 (159) +20   Velocity – 71km/sec.
Northern Hemisphere – 2 per hr.   Southern Hemisphere – 1 per hr.

November Iota Draconids (NID – 12:44 (191) +68   Velocity – 43km/sec.
Northern Hemisphere -<1 per hr.   Southern Hemisphere – <1 per hr.

Clear Skies!
Robert Lunsford
American Meteor Society

Meteor Activity Outlook for November 10-16, 2012

The following is a slightly edited version of Bob Lunsford’s excellent weekly summary of meteor activity. The original version can be found at the American Meteor Society’s site.

As seen from the northern hemisphere, meteor rates continue to be strong in November. While no major activity is expected this month, the two Taurid radiants plus the Leonids keep the skies active. The addition of strong sporadic rates make November one of the better months to view meteor activity from north of the equator. Skies are fairly quiet as seen from the
southern hemisphere this month. Activity from the three showers mentioned above may be seen from south of the equator, but the sporadic rates are much lower than those seen in the northern hemisphere.

During this period the moon reaches its new phase on Tuesday November 13th. At this time the moon is located near the sun and cannot be seen at night. This weekend the waning crescent moon will rise during the late morning hours, but it will rise so late and be so thin that it will not interfere with meteor observing. As the week progresses the moon will enter the evening sky but will set shortly after dusk, not causing any problems for watching meteor activity. The estimated total hourly meteor rates for evening observers this week is near five for observers located at mid-northern latitudes and three for observers in mid-southern latitudes. For morning observers the estimated total hourly rates should be near twenty from the mid-northern hemisphere and twelve from the mid-southern hemisphere. The actual rates will also depend on factors such as personal light and motion perception, local weather conditions, alertness and experience in watching meteor activity.

The radiant (the area of the sky where meteors appear to shoot from) positions and rates listed below are exact for Saturday night/Sunday morning November 10/11. These positions do not change greatly day to day so the listed coordinates may be used during this entire period.

The following radiants are expected to be active this week:

Remnants from the famous Andromedid (AND) shower, noted for intense storms during the 19th century, may still be seen throughout November. The current position of this large radiant is 01:32 (023) +31 . This position lies on the Pisces/Triangulum border, very close to the large, but faint spiral galaxy known as M33. If you are not familiar with M33, then the nearest bright star is second magnitude Mirach (Beta Andromedae), which lies five degrees to the northwest. The radiant is so diffuse that Andromedid meteors may be seen coming from southern Andromeda, Triangulum, and northwestern Aries as well as eastern Pisces. Visual activity is expected to be low, but detectable. An inconspicuous maximum occurs on November 9, when this source is the 5th most active radiant in the sky. The Andromedid meteors are best seen near 2200 (10pm) local standard time (LST), when the radiant lies on the meridian and lies highest in the sky. At 19km/sec., the average Andromedid will appear as a v
ery slow moving meteor.

The Northern Taurid (NTA) radiant is the most active source of meteor activity this week, producing 3-4 shower members per hour, depending on your location. The radiant is centered at 03:52 (058) +22. This area of the sky lies in  western Taurus just one degree south of the famous naked eye open cluster known as the Pleiades or the Seven Sisters. The radiant is best placed near 0100 LST, when it lies highest above the horizon. Meteors from the Northern Taurids strike the atmosphere at 29km/sec., which would produce meteors of slow velocity. You must face in the general direction of the north and south Taurid radiants in order to tell them apart.

The Southern Taurid (STA) radiant is currently located at 04:00 (060) +15. This position lies in western Taurus, eight degrees southeast of the famous naked eye open cluster known as the Pleiades or the Seven Sisters. This radiant is also best placed near 0100 LST, when it lies on the meridian and is located highest in the sky. Maximum occurred on October 9th, so rates would now be near two per hour , no matter your location. With an entry velocity of 29 km/sec., the average Southern Taurid meteor would be of slow velocity.

The November Orionids (NOO) may be seen in small numbers beginning this week. The peak for this radiant is not until November 30th, so rates would be less than than one shower member per hour, no matter your location. The radiant is located at 05:08 (077) +16. This area of the sky is located on the Orion/Taurus border, seven degrees east of the first magnitude orange star Aldebaran (Alpha Tauri). This location is close to the Taurid complex, but far enough east to be distinguishable. The faster velocity of the November should help distinguish these meteors from the slower, but more numerous Taurids. The radiant is best placed for viewing near 0200 LST when it lies on the meridian and is highest above the horizon. With an entry velocity of 44 km/sec., the November Orionids would be of medium speed.

The Orionids (ORI) are still active but rates are slowing falling with each passing night. The radiant located at 07:28 (112) +16. This area of the sky is located in southern Gemini, twelve degrees east of the second magnitude star Alhena (Gamma Geminorum). The radiant is best placed for viewing near 0400 LST when it lies on the meridian and is highest above the horizon. Orionid meteors are equally well seen either side of the equator. With an entry velocity of 67 km/sec., most activity from this radiant would be swift.

Studies of the IMO video database by Sirko Molau and Juergen Rendtel has revealed a radiant active in the constellation of Cancer this time of year. Rates are weak but detectable under moonless skies. The Zeta Cancrids (ZCN) are active throughout November but activity dates and radiant positions are poorly determined. During this period the radiant lies near 08:24 (126) +08.  This area of the sky is located in southern Cancer, one degree southeast of the third magnitude star Al Tarf (Beta Cancri). This area of the sky may be more easier found using the “head” of Hydra as a guide, as it lies only five degrees to the southeast. The radiant is best placed for viewing near 0500 LST when it lies on the meridian and is highest above the horizon.  With an entry velocity of 70 km/sec., most activity from this radiant would be swift. These meteors can be seen equally well from either side of the equator.

The Leonids (LEO) are now the second most active radiant in the sky, producing 1-2 shower members per hour during the last couple of hours before dawn. The radiant is currently located at 10:00 (150) +24. This position lies in northwestern Leo, within the “sickle” of Leo, three degrees west of the third magnitude star Adhafera (Zeta Leonis). The Leonid radiant is best placed during the last hour before morning twilight when the radiant lies highest in a dark sky. Leonids may be seen from the southern hemisphere but the viewing conditions are not quite as favorable as those north of the equator.

As seen from the mid-northern hemisphere (45N) one would expect to see approximately eleven sporadic meteors per hour during the last hour before dawn as seen from rural observing sites. Evening rates would be near four per hour. As seen from the mid-southern hemisphere (45S), morning rates would be near five per hour as seen from rural observing sites and two per hour during the evening hours. Locations between these two extremes would see activity between the listed figures.

The list below presents a summary of the expected activity this week. Rates and
positions are exact for Saturday night/Sunday morning, but may be used all week.

Andromedids (AND) – 01:32 (023) +31    Velocity 19km/sec
Northern Hemisphere – 1 per hr    Southern Hemisphere – <1 per hour

Northern Taurids (NTA) – 03:52 (058) +22    Velocity 29km/sec
Northern Hemisphere – 4 per hr    Southern Hemisphere – 3 per hour

Southern Taurids (STA) -04:00 (060) +15    Velocity 29km/sec
Northern Hemisphere – 2 per hr    Southern Hemisphere – 2 per hour

November Orionids (NOO)  05:08 (077) +16   Velocity 44km/sec
Northern Hemisphere – <1 per hr    Southern Hemisphere – <1 per hour

Orionids (ORI) 07:28 (112) +16    Velocity 67km/sec
Northern Hemisphere – 1 per hr    Southern Hemisphere – 1 per hour

Zeta Cancrids (ZCN)  08:24 (126) +08    Velocity 70km/sec
Northern Hemisphere – <1 per hr    Southern Hemisphere – <1 per hour

Leonids (LEO) 10:00 (150) +24    Velocity 71km/sec
Northern Hemisphere – 2 per hr    Southern Hemisphere – 1 per hour

Clear Skies!
Robert Lunsford
American Meteor Society

Meteor Activity Outlook for November 3-9, 2012

The following is a slightly edited version of Bob Lunsford’s excellent weekly summary of meteor activity. The original version can be found at the American Meteor Society’s site.

As seen from the northern hemisphere, meteor rates continue to be strong in November. While no major activity is expected this month, the two Taurid radiants plus the Leonids keep the skies active. The addition of strong sporadic rates make November one of the better months to view meteor activity from north of the equator. Skies are fairly quiet as seen from the
southern hemisphere this month. Activity from the three showers mentioned above may be seen from south of the equator, but the sporadic rates are much lower than those seen in the northern hemisphere.

During this period the moon reaches its last quarter phase on Wednesday November 7th. At this time the moon is located ninety degrees west of the sun and well rise near 2300 (11pm) local standard time (LST). This weekend the waning gibbous moon will rise during the late evening hours and will interfere with meteor observing the remainder of the night. As the week progresses the moon will rise later and later, becoming less of a nuisance with each passing night. The estimated total hourly meteor rates for evening observers this week is near four for observers located at mid-northern latitudes and three for observers in mid-southern latitudes. For morning observers the estimated total hourly rates should be near fourteen from the mid-northern hemisphere and eight from the mid-southern hemisphere. The actual rates will also depend on factors such as personal light and motion perception, local weather conditions, alertness and experience in watching meteor activity. Rates during the morning hours are reduced this week due to moonlight.

The radiant (the area of the sky where meteors appear to shoot from) positions and rates listed below are exact for Saturday night/Sunday morning November 3/4. These positions do not change greatly day to day so the listed coordinates may be used during this entire period.

The following radiants are expected to be active this week:

Remnants from the famous Andromedid (AND) shower, noted for intense storms during the 19th century, may still be seen throughout November. The current position of this large radiant is 01:24 (021) +23 . This position lies in eastern Pisces, ten degrees west of the second magnitude star Hamal (Alpha Arietis). The radiant is so diffuse that Andromedid meteors may be seen coming from southern Andromeda, Triangulum, and northwestern Aries as well as eastern Pisces. Visual activity is expected to be low, but detectable. An inconspicuous maximum occurs on November 9, when this source is the 5th most active radiant in the sky. The Andromedid meteors are best seen near 2200 LST, when the radiant lies on the meridian and lies highest in the sky. At 19km/sec., the average Andromedid will appear as a very slow moving meteor.

The Northern Taurids (NTA) are now active from a large radiant centered at 03:28 (052) +21. This area of the sky lies on the Aries/Taurus border, five degrees southwest of the famous naked eye open cluster known as the Pleiades or the Seven Sisters. The radiant is best placed near 0100 LST, when it lies highest above the horizon. Maximum activity is not expected until November 13, so current rates would be 2-3 per hour, no matter your location. Meteors from the Northern Taurids strike the atmosphere at 29km/sec., which would produce meteors of slow velocity.  You must face in the general direction of the north and south Taurid radiants in order to tell them apart.

The Southern Taurid (STA) radiant is currently located at 03:36 (054) +13. This position lies in western Taurus, ten degrees south of the famous naked eye open cluster known as the Pleiades or the Seven Sisters. This radiant is best placed near 0100 LST, when it lies on the meridian and is located highest in the sky. Maximum occurred on October 9th, so rates would now be near one per hour when the radiant lies high in the sky. With an entry velocity of 29 km/sec., the average Southern Taurid meteor would be of slow velocity.

The Orionids (ORI) are still the second most active shower this upcoming week producing up to two shower members per hour from a radiant located at 07:04 (106) +16. This area of the sky is located in southern Gemini, five degrees east of the second magnitude star Alhena (Gamma Geminorum). The radiant is best placed for viewing near 0400 LST when it lies on the meridian and is highest above the horizon. Orionid meteors are equally well seen either side of the equator. With an entry velocity of 67 km/sec., most activity from this radiant would be swift.

The Leonids (LEO) are actually active in small numbers during the morning hours in early November. The radiant is currently located at 09:36 (144) +28. This position lies in  northwestern Leo,  four degrees northwest of the fourth magnitude star Mu Leonis. Rates are only one per hour at best but will increase as the moon exits the morning sky. The Leonid radiant is best placed during the last hour before morning twilight when the radiant lies highest in a dark sky. Leonids may be seen from the southern hemisphere but the viewing conditions are not quite as favorable as those north of the equator.

As seen from the mid-northern hemisphere (45N) one would expect to see approximately seven sporadic meteors per hour during the last hour before dawn as seen from rural observing sites. Evening rates would be near three per hour. As seen from the mid-southern hemisphere (45S), morning rates would be near three per hour as seen from rural observing sites and two per hour during the evening hours. Locations between these two extremes would see activity between the listed figures. Rates during the morning hours are reduced this week due to moonlight.

The list below presents a summary of the expected activity this week. Rates and
positions are exact for Saturday night/Sunday morning, but may be used all week.

Andromedids (AND) – 01:24 (021) +23   Velocity 19km/sec
Northern Hemisphere – 1 per hr   Southern Hemisphere – <1 per hour

Northern Taurids (NTA) – 03:28 (052) +21   Velocity 29km/sec
Northern Hemisphere – 3 per hr   Southern Hemisphere – 2 per hour

Southern Taurids (STA) – 03:36 (054) +13   Velocity 29km/sec
Northern Hemisphere – 1 per hr   Southern Hemisphere – 1 per hour

Orionids (ORI) 07:04 (106) +16   Velocity 67km/sec
Northern Hemisphere – 2 per hr   Southern Hemisphere – 2 per hour

Leonids (LEO) 09:36 (144) +28   Velocity 71km/sec
Northern Hemisphere – <1 per hr   Southern Hemisphere – <1 per hour

Clear Skies!
Robert Lunsford
American Meteor Society

Meteor Activity Outlook for October 20-26, 2012

The following is a slightly edited version of Bob Lunsford’s excellent weekly summary of meteor activity. The original version can be found at the American Meteor Society’s site.

Meteor activity in general increases in October when compared to September. A major shower (the Orionids) is active all month long with many minor showers. Both branches of the Taurids become more active as the month progresses, providing slow, graceful meteors to the nighttime scene. The Orionids are the big story of the month reaching maximum activity on the 22nd. This display can be seen equally well from both hemispheres which definitely helps out observers located in the sporadic-poor southern hemisphere this time of year.

During this period the moon reaches its first quarter phase on Sunday October 21st. At this time the moon is located ninety degrees east of the sun and well set near 2300 (11pm) local daylight time (LDT). As the week progresses the waxing gibbous moon will set later and later in the morning, interfering with meteor observing. The estimated total hourly meteor rates for evening observers this week is near three for observers located at mid-northern latitudes and two for observers in mid-southern latitudes. For morning observers the estimated total hourly rates should be near thirty eight from the mid-northern hemisphere and twenty seven from the mid-southern hemisphere. The actual rates will also depend on factors such as personal light and motion perception, local weather conditions, alertness and experience in watching meteor activity. Rates during the evening hours are reduced this week due to moonlight.

The radiant (the area of the sky where meteors appear to shoot from) positions and rates listed below are exact for Saturday night/Sunday morning October 20/21. These positions do not change greatly day to day so the listed coordinates may be used during this entire period.

The following radiants are expected to be active this week:

The Northern Taurids (NTA) are now active from a large radiant centered at 02:40 (040) +19, which lies in central Aries, eight degrees southeast of the second magnitude star Hamal (Alpha Arietis). The radiant is best placed near 0200 local daylight time (LDT), when it lies highest above the horizon. Maximum activity is not expected until November 13, so current rates would be 1-2 per hour, no matter your location. Meteors from the Northern Taurids strike the atmosphere at 29km/sec., which would produce meteors of slow velocity.  You must face in the general direction of the north and south Taurid radiants in order to tell them apart.

The Southern Taurid (STA) radiant is currently located at 02:48 (042) +11. This position lies near on the Cetus/Aries border, very close the the fourth magnitude star Mu Ceti. This radiant is best placed near 0200 local daylight time (LDT), when it lies on the meridian and is located highest in the sky. Maximum occurred on October 9th, so rates would now be near two per hour when the radiant lies high in the sky. With an entry velocity of 29 km/sec., the average Southern Taurid meteor would be of slow velocity.

The Orionids (ORI) reach maximum activity on mornings of October 21st and 22nd. The radiant is currently located at 06:20 (095) +16, which is in the northeastern Orion, four degrees west of the second magnitude star Alhena (Gamma Geminorum). The radiant is best placed for viewing near 0500 when it lies on the meridian and is highest above the horizon. At this time of night one should be able to count at least 20 shower members per hour from rural locations. Good rates can actually be seen any time during the morning hours. Orionid meteors are equally well seen either side of the equator. With an entry velocity of 67 km/sec., most activity from this radiant would be swift. This display does not have a sharp peak so activity seen after moon set after the 22nd should be good. Unfortunately the moon will begin to interfere late in the week.

The Epsilon Geminids (EGE) are active all month long with low hourly rates. Even at maximum activity only three shower members per hour are expected. Recent research by the IMO has indicated an earlier maximum of October 15th, rather than October 19th. The radiant position is currently located at 06:56 (104) +28. This position lies in northern Gemini, four degrees northeast of the fourth magnitude star Mebsuta (Epsilon Geminorum). The radiant is also best placed during the last dark hour before dawn, when it lies highest above the horizon in a dark sky. Rates would be near two per hour as seen from the northern hemisphere and less than one per hour as seen south of the equator. With an entry velocity of 70 km/sec., most activity from this radiant would be swift.

The Leonis Minorids (LMI) are active from October 16-27 with maximum activity occurring on October 23rd. This radiant is currently located at 10:36 (159) +37, which places it in northeast Leo Minor, four degrees northeast of the fourth magnitude star Beta Leonis Minoris . The radiant is best placed just before dawn when it lies highest in a dark sky. This shower is better situated for observers situated in the northern hemisphere where the radiant rises far higher into the sky before the start of morning twilight. At 60km/sec., the average Leonis Minorid is swift.

As seen from the mid-northern hemisphere (45N) one would expect to see approximately ten sporadic meteors per hour during the last hour before dawn as seen from rural observing sites. Evening rates would be near two per hour. As seen from the mid-southern hemisphere (45S), morning rates would be near five per hour as seen from rural observing sites and one per hour during the evening hours. Locations between these two extremes would see activity between the listed figures. Rates during the evening hours are reduced this week due to moonlight.

The list below presents a summary of the expected activity this week. Rates and
positions are exact for Saturday night/Sunday morning, but may be used all week.

Northern Taurids (NTA) – 02:40 (040) +19   Velocity 29km/sec
Northern Hemisphere – 2 per hr   Southern Hemisphere – 2 per hour

Southern Taurids (STA) -02:48 (042) +11   Velocity 29km/sec
Northern Hemisphere – 2 per hr   Southern Hemisphere – 2 per hour

Orionids (ORI) 06:20 (095) +16   Velocity 67km/sec
Northern Hemisphere – 20 per hr   Southern Hemisphere – 18 per hour

Epsilon Geminids (EGE) 06:56 (104) +28   Velocity 70km/sec
Northern Hemisphere – 2 per hr   Southern Hemisphere – <1 per hour

Leonis Minorids (LMI) – 10:36 (159) +37   Velocity 60km/sec
Northern Hemisphere – 2 per hr   Southern Hemisphere – <1 per hour

Clear Skies!
Robert Lunsford
American Meteor Society

Meteor Activity Outlook for December 3-9, 2011

The following is a slightly edited version of Bob Lunsford’s excellent weekly summary of meteor activity. The original version can be found at the American Meteor Society’s site.

No matter where you live, the first half of December provides some of the best meteor activity of the year. Unfortunately in 2011, the moon will spoil much of this activity as I reaches its full phase on the 10th. In the northern hemisphere the sporadic rates are still strong plus you can also count on strong activity from the Geminids, which peak on December 14. There are also several minor radiants that add a few meteors each hour. All of these centers of activity are located high in the sky during the early morning hours this time of year. Much of the activity mentioned above can also be seen from the southern hemisphere. While the sporadic rates are not as strong as those seen from the north, they are stronger than the previous months and heading for a maximum in February. The warm, but short summer nights south of the equator make for some great viewing as long as the moon does not interfere.

During this period the moon waxes from half illuminated to nearly full by the end of the period. This weekend the waxing gibbous moon will set during the early morning hours, allowing a few hours of observing under dark skies between moon set and the start of morning twilight. The estimated total hourly rates for evening observers this week is near three as seen from the northern hemisphere and two as seen from the southern hemisphere. For morning observers the estimated total hourly rates should be near twenty two as seen from mid-northern latitudes and eighteen from mid-southern latitudes. The actual rates will also depend on factors such as personal light and motion perception, local weather conditions, alertness and experience in watching meteor activity. Evening rates are reduced due to moonlight.

The radiant (the area of the sky where meteors appear to shoot from) positions and rates listed below are exact for Saturday night/Sunday morning December 3/4. These positions do not change greatly day to day so the listed coordinates may be used during this entire period.

The following showers are expected to be active this week:

The December Phoenicids (PHO) are a periodic shower that rarely produces noticeable activity. The only impressive display produced by this shower occurred in 1956 when ZHR’s were near 100. Peak activity occurs on December 6. Little activity is expected away from the peak night. The radiant is currently located at 00:46 (016) -53. This position lies in eastern Phoenix, five degrees northwest of the first magnitude star Archernar (Alpha Eridani). These meteors are best seen near 2000 (8pm) local standard time (LST), when the radiant lies highest above the horizon in a dark sky. Due to the southerly declination of the radiant, this shower is not visible north of the northern tropical areas. The deep southern hemisphere has the best chance of seeing any activity. At 22 km/sec. the Phoenicids produce very slow meteors.

The last of the Northern Taurids (NTA) for 2011 will be seen this week from a large radiant centered at 05:09 (077) +26. This position lies in eastern Taurus, five degrees southwest of the second magnitude star El Nath (Beta Tauri). The radiant is best placed near midnight LST, when it lies highest above the horizon. Since the radiant is large, Northern Taurid meteors may also appear to come from southern Auriga, southeastern Perseus, northern Orion, and western Gemini as well as Taurus. Meteors from the Northern Taurids strike the atmosphere at 29km/sec., which would produce meteors of slow velocity. Expected rates would be near two per hour, no matter your location.

The November Orionids (NOO) were recently discovered by Sirko Molau and Jueregen Rendtel by analyzing video data from the IMO network. For years this radiant was lost in the maze of radiants active this time of year. Due to the low activity, visual observers were unable to detect this shower. This shower is active from November 18 through December 9. Maximum activity occurred on November 30. Once you know the radiant in advance, this shower is actually quite noticeable, producing an average of two shower members per hour near maximum. The radiant is currently located at 06:16 (094) +15. This position lies in northeastern Orion, seven degrees northeast of the orange first magnitude star Betelgeuse (Alpha Orionis). These meteors are best seen near 0100 LST when the radiant lies on the meridian and highest above the horizon. At 44 km/sec. the November Orionids produce mostly medium velocity meteors.

The Monocerotids (MON) are active from December 7th through the 18th. Peak activity occurs on December 8th. On the night of maximum activity the radiant is located at 06:37 (099) +08. This position lies in northern Monoceros, eight degrees south of the second magnitude star Alhena (Gamma Geminorum). Rates at maximum should be near one per hour no matter your location. The Monocerotids are best seen near 0100 LST when the radiant lies highest above the horizon. At 41 km/sec. the Monocerotids produce mostly meteors of medium velocity.

Geminid (GEM) activity begins this weekend from a radiant located at 06:55 (104) +34. This position lies in northern Gemini, near the fourth magnitude star Theta Geminorum. Expected rates this weekend would only be near one per hour as maximum is still ten days away. Although Geminid meteors can be seen all night long, they are best seen near 0200 LST when the radiant lies highest above the horizon. This shower peaks on the night of December 14, when rates can surpass 60 shower members per hour in moonless skies. Unfortunately this year there will be a bright moon and observers will be limited to seeing no more than 20-30 meteors per hour. Geminid activity can be seen from the southern hemisphere but at much reduced rate. As seen from south of the equator, Geminid activity could only be seen for a few hours before and after 0200 LST. At 35 km/sec. the Geminids produce mostly meteors of medium velocity.

The Puppid-Velids (PUP) are a vast complex of weak radiants located in the constellations of Puppis and Vela. Visual plots and photographic studies have revealed many radiants in this area during November and December. The combined strength of these radiants can produce a ZHR of ten. Actual hourly rates will be much less unless you happen to be observing from the deep Southern Hemisphere. Activity from this source begins around December 1st. The center of this activity is currently located at 08:05 (121) -45. This position lies in western Vela, two degrees north of the second magnitude star Gamma Velorum. Peak rates occur near December 7. These meteors are best seen near 0300 LST when the radiant lies highest above the horizon in a dark sky. Observers located in the Southern Hemisphere have an advantage viewing this shower as the radiant will rise higher into their sky allowing more activity to be seen. Since the radiant lies low in the south for most northern hemisphere observers, meteors seen from north of the equator tend to be long in length and long-lasting. At 40 km/sec. the Puppid-Velids produce meteors of average velocity.

The Sigma Hydrids (HYD) are active from November 26 through December 20. Maximum activity occurs on December 6 from a radiant located at 08:11 (122) +03. This position lies on the Hydra/Canis Minor border, seven degrees southeast of the brilliant zero magnitude star Procyon (Alpha Canis Minoris). These meteors are best seen near 0300 LST when the radiant lies highest above the horizon. Current rates would be near two per hour no matter your location. At 61 km/sec. the Sigma Hydrids produce mostly swift meteors.

Activity from the December Leonis Minorids (DLM) begin next week from a radiant located at 09:56 (149) +37. This position lies in central Leo Minor, seven degrees northeast of the fourth magnitude star Alpha Lyncis. These meteors are best seen near 0500 LST when the radiant lies highest above the horizon. This shower peaks on December 20th so current rates would be near one per hour as seen from the northern hemisphere and less than one per hour as seen from south of the equator. At 64 km/sec. the December Leonis Minorids produce mostly swift meteors.

Another shower verified by video means are the Psi Ursa Majorids (PSU). This shower is active from November 29-December 13 with maximum activity occurring on December 5. On Tuesday the radiant is located at 11:07 (167) +43. This position lies in southern Ursa Major, one degree south of the third magnitude star Psi Ursae Majoris. This area of the sky is best placed during the last hour before dawn, when it lies highest above the horizon in a dark sky. Current rates would most likely be less than one per hour. At 61km/sec., the average Psi Ursa Majorid meteor would be swift.

Another shower verified by video means are the December Kappa Draconids (KDR). This shower is active from November 30-December 6 with maximum activity occurring on December 3rd. On the night of maximum the radiant will be located at 12:24 (186) +70. This position lies in extreme western Draco, close to the faint star Kappa Draconis. While the radiant lies above the horizon all night for most of the northern hemisphere, it is best placed during the last hour before dawn, when it lies highest above the horizon in a dark sky. Current rates would most likely be less than one per hour. At 43km/sec., the average December Kappa Draconid meteor would be of medium velocity.

Lastly, the December Alpha Draconids (DAD) are active beginning Sunday from a radiant located at 13:31 (203) +60. This position actually lies in northeastern Ursa Major, five degrees north of the second magnitude double star Mizar (Zeta Ursae Majoris). These meteors are best seen during the last dark hour before dawn, when the radiant lies highest above the horizon in a dark sky. This shower is not well seen from the southern hemisphere. Maximum activity is expected on Monday December 5th, but hourly rates would probably be less than one no matter your location. At 44 km/sec. the Alpha Draconids produce mostly medium speed meteors.

As seen from the mid-northern hemisphere (45N) one would expect to see approximately twelve sporadic meteors per hour during the last hour before dawn as seen from rural observing sites. Evening rates would be near two per hour. As seen from the mid-southern hemisphere (45S), morning rates would be near six per hour as seen from rural observing sites and one per hour during the evening hours. Locations between these two extremes would see activity between the listed figures. Evening rates are reduced due to moonlight.

The list below presents a condensed version of the expected activity this week. Rates and positions are exact for Saturday night/Sunday morning.

Shower Name                 RA     DEC   Vel     Rates
                                         km/s   NH    SH
PHO Dec Phoenicids        00h 46m  -52    18    <1    <1
NTA Northern Taurids      05h 09m  +26    29     2     2
NOO November Orionids     06h 16m  +15    44     2     2
MON Monocerotids          06h 37m  +08    41     1     1
GEM Geminids              06h 55m  +34    35     1     1
PUP Puppids-Velids        08h 05m  -45    40    <1     2
HYD Sigma Hydrids         08h 11m  +03    61     2     2
DLM Dec Leonis Minorids   09h 56m  +37    64     1    <1
PSU Psi Ursa Majorids     11h 07m  +43    61    <1    <1
KDR Dec Kappa Draconids   12h 24m  +70    43    <1    <1
DAD Dec Alpha Draconids   13h 31m  +60    44    <1    <1

RA - Right Ascension
DEC - Declination
Vel - Velocity relative to Earth (in km per sec)
Rates - Rate of visible meteors per hour from a dark site
NH - Northern Hemisphere
SH - Southern Hemisphere

Meteor Activity Outlook for November 19-25, 2011

The following is a slightly edited version of Bob Lunsford’s excellent weekly summary of meteor activity. The original version can be found at the American Meteor Society’s site.

As seen from the northern hemisphere, meteor rates continue to be strong in November. While no major activity is expected this month, the two Taurid radiants plus the Leonids keep the skies active. The addition of strong sporadic rates make November one of the better months to view meteor activity from north of the equator. Skies are fairly quiet as seen from the southern hemisphere this month. Activity from the three showers mentioned above may be seen from south of the equator, but the sporadic rates are much lower than those seen in the northern hemisphereDuring this period the moon reaches its new phase on Thursday November 25th. At that time the moon will lie near the sun and will not be visible at night. This weekend the waning crescent moon will be a nuisance in the late morning sky but will not inhibit meteor watching. If the moon is above the horizon simple face in a direction in which it lies outside of your field of view. The moon will be less of a problem with each passing night as it approaches the sun. The estimated total hourly rates for evening observers this week is near four as seen from the northern hemisphere and three as seen from the southern hemisphere. For morning observers the estimated total hourly rates should be near fifteen as seen from mid-northern latitudes and twelve from mid-southern latitudes. The actual rates will also depend on factors such as personal light and motion perception, local weather conditions, alertness and experience in watching meteor activity. Morning rates are slightly reduced this week due to moonlight.

The radiant (the area of the sky where meteors appear to shoot from) positions and rates listed below are exact for Saturday night/Sunday morning November 19/20. These positions do not change greatly day to day so the listed coordinates may be used during this entire period.

Remnants from the famous Andromedid (AND) shower, noted for intense storms during the 19th century, may still be seen throughout November. The current position of this large radiant is 01:38 (024) +39. This position lies in central Andromeda, two degrees south of the fourth magnitude star Upsilon Andromedae. The radiant is so diffuse that Andromedid meteors may also be seen coming from Triangulum, extreme northwestern Perseus, and southeastern Cassiopeia as well as Andromeda. Visual activity is expected to be low, but detectable. An inconspicuous maximum occured on November 12. The Andromedid meteors are best seen near 2200 (10pm) LST (Local Standard Time), when the radiant lies on the meridian. At 19km/sec., the average Andromedid will appear as a very slow moving meteor.

The last of the Omicron Eridanids (OER) will be seen this weekend from a radiant located at 04:06 (061) -03. This position lies in northeastern Eridanus, fifteen degrees northwest of the bright zero magnitude star Rigel (Beta Orionis). The radiant is best placed near 0100 LST, when it lies highest above the horizon. Meteors from the Omicron Eridanids strike the atmosphere at 27km/sec., which would produce meteors of slow velocity. Expected rates from this weak shower would be less than one per hour, no matter your location.

The Northern Taurids (NTA) are active from a large radiant centered at 04:22 (066) +24. This position lies in central Taurus, seven degrees north of the bright first magnitude orange star Aldebaran (Alpha Tauri). The radiant is best placed near 0100 LST, when it lies highest above the horizon. Since the radiant is large, Northern Taurid meteors may also appear to come from southwestern Auriga, southeastern Perseus, northwestern Orion, as well as Taurus. Meteors from the Northern Taurids strike the atmosphere at 29km/sec., which would produce meteors of slow velocity. Expected rates would be near two per hour, no matter your location.

The November Orionids (NOO) were recently discovered by Sirko Molau and Jueregen Rendtel by analyzing video data from the IMO network. For years this radiant was lost in the maze of radiants active this time of year. Due to the low activity, visual observers were unable to detect this shower. This shower is active from November 18 through December 9. Maximum activity occurs on November 30. Once you know the radiant in advance, this shower is actually quite noticeable, producing an average of two shower members per hour near maximum. The radiant is currently located at 05:35 (084) +16. This position lies in northern Orion, nine degrees northwest of the orange first magnitude star Betelgeuse (Alpha Orionis). These meteors are best seen near 0200 LST when the radiant lies on the meridian and highest above the horizon. At 44 km/sec. the November Orionids produce mostly medium velocity meteors.

The Leonids (LEO) should peak on November 18th. Up to five Leonids an hour may be seen during the morning hours this weekend. Rates will fall as the week progresses. The radiant is currently located at 10:22 (155) +21. This position lies in western Leo only two degrees north of the third magnitude star Algeiba (Gamma Leonis). At 71km/sec., the average Leonid is swift with a high percentage of trains. These meteors are best seen during the last hour before the onset of morning twilight, when the radiant lies highest above the horizon in a dark sky.

As seen from the mid-northern hemisphere (45N) one would expect to see approximately nine sporadic meteors per hour during the last hour before dawn as seen from rural observing sites. Evening rates would be near three per hour. As seen from the mid-southern hemisphere (45S), morning rates would be near five per hour as seen from rural observing sites and two per hour during the evening hours. Locations between these two extremes would see activity between the listed figures. Morning rates are slightly reduced due to moonlight.:

The list below presents a condensed version of the expected activity this week. Rates and positions are exact for Saturday night/Sunday morning.

Shower Name                 RA     DEC   Vel     Rates
                                         km/s   NH    SH
AND Andromedids           01h 38m  +39    19    <1    <1
OER Omicron Eridanids     04h 06m  -03    27    <1    <1
NTA Northern Taurids      04h 22m  +24    29     2     2
NOO November Orionids     05h 35m  +16    44     1     1
LEO Leonids               10h 22m  +21    71     3     2

RA - Right Ascension
DEC - Declination
Vel - Velocity relative to Earth (in km per sec)
Rates - Rate of visible meteors per hour from a dark site
NH - Northern Hemisphere
SH - Southern Hemisphere

Meteor Activity Outlook for November 5-11, 2011

The following is a slightly edited version of Bob Lunsford’s excellent weekly summary of meteor activity. The original version can be found at the American Meteor Society’s site.

As seen from the northern hemisphere, meteor rates continue to be strong in November. While no major activity is expected this month, the two Taurid radiants plus the Leonids keep the skies active. The addition of strong sporadic rates make November one of the better months to view meteor activity from north of the equator. Skies are fairly quiet as seen from the southern hemisphere this month. Activity from the three showers mentioned above may be seen from south of the equator, but the sporadic rates are much lower than those seen in the northern hemisphere.

During this period the moon reaches its full phase on Thursday November 10th. At this time the moon will lie opposite of the sun and will be present in the sky all night long. This will be the worse time to try and view meteor activity this month as the brilliant moonlight will obscure all but the brightest meteors. This weekend the waxing gibbous moon will set during the early morning hours and will allow a short glimpse of early November meteor activity under dark conditions. The estimated total hourly rates for evening observers this week is near three as seen from the northern hemisphere and two as seen from the southern hemisphere. For morning observers the estimated total hourly rates should be near fifteen as seen from mid-northern latitudes and ten from mid-southern latitudes. The actual rates will also depend on factors such as personal light and motion perception, local weather conditions, alertness and experience in watching meteor activity. Evening rates are reduc
ed this week due to moonlight.

The radiant (the area of the sky where meteors appear to shoot from) positions and rates listed below are exact for Saturday night/Sunday morning November 5/6. These positions do not change greatly day to day so the listed coordinates may be used during this entire period.

The following showers are expected to be active this week:

Remnants from the famous Andromedid (AND) shower, noted for intense storms during the 19th century, may still be seen throughout November. The current position of this large radiant is 01:26 (022) +27. This position lies in a sparse area of northeastern Pisces. The nearest bright star is third magnitude Alpha Trianguli, which lies five degrees to the northeast. The radiant is so diffuse that Andromedid meteors may be seen coming from southern Andromeda, Triangulum, and northwestern Aries as well as eastern Pisces. Visual activity is expected to be low, but detectable. An inconspicuous maximum occurs on November 12. The Andromedid meteors are best seen near 2200 (10pm) LST (Local Standard Time), when the radiant lies on the meridian. At 19km/sec., the average Andromedid will appear as a very slow moving meteor.

The Northern Taurids (NTA) are active from a large radiant centered at 03:35 (054) +22. This position lies in western Taurus, three degrees southwest of the famous naked eye cluster known as the Pleiades (seven sisters). The radiant is best placed near 0100 LST, when it lies highest above the horizon. Since the radiant is large, Northern Taurid meteors may also appear to come from Aries, southern Perseus, as well as western Taurus. Meteors from the Northern Taurids strike the atmosphere at 29km/sec., which would produce meteors of slow velocity. Expected rates would be near two per hour, no matter your location.

The center of the Southern Taurid (STA) radiant now lies 03:39 (055) +14. This position also lies in western Taurus, but ten degrees south of the Pleiades.  The radiant is also best placed near the meridian at 0100 LST, but activity may be seen all night long. Since the radiant is large, Southern Taurid meteors may also appear to come from Aries as well as Taurus. Striking the atmosphere at 29 km/sec., the average Southern Taurid meteor travels slowly through the skies. Rates should be near one per hour no matter your location.

The Orionids (ORI) remain weakly active from a radiant located at 07:11 (108) +16. This position lies in southern Gemini, five degrees east of the second magnitude star Alhena (Gamma Geminorum). The radiant is best placed near 0400 LST, when it lies highest above the horizon. At 67km/sec., the average Orionid is swift with the brightest meteors producing persistent trains.

The Leonids (LEO) are just now coming to life from a radiant located at 09:48 (147) +25. This position lies in western Leo only one degree north of the third magnitude star Algenubi (Epsilon Leonis). Maximum activity is still more than a week away so current rates would most likely be less than one per hour. At 71km/sec., the average Leonid is swift with a high percentage of trains. These meteors are best seen during the last hour before the onset of morning twilight, when the radiant lies highest above the horizon in a dark sky.

As seen from the mid-northern hemisphere (45N) one would expect to see approximately eleven sporadic meteors per hour during the last hour before dawn as seen from rural observing sites. Evening rates would be near two per hour. As seen from the mid-southern hemisphere (45S), morning rates would be near five per hour as seen from rural observing sites and one per hour during the evening hours. Locations between these two extremes would see activity between the listed figures. Evening rates are reduced due to moonlight.

The list below presents a condensed version of the expected activity this week. Rates and positions are exact for Saturday night/Sunday morning.

Shower Name                 RA     DEC   Vel     Rates
                                         km/s   NH    SH
AND Andromedids           01h 26m  +27    19    <1    <1
NTA Northern Taurids      03h 35m  +22    29     2     2
STA Southern Taurids      03h 39m  +14    29     1     1 
ORI Orionids              07h 11m  +16    61     1     1
LEO Leonids               09h 48m  +25    71    <1    <1

RA - Right Ascension
DEC - Declination
Vel - Velocity relative to Earth (in km per sec)
Rates - Rate of visible meteors per hour from a dark site
NH - Northern Hemisphere
SH - Southern Hemisphere
Follow

Get every new post delivered to your Inbox.

Join 104 other followers